
CHAPTER 2. KEYED NON-SURJECTIVE FUNCTIONS IN STREAMCIPHERS53

is 512. �

This demonstrates the contribution to the security of RC4 made by the simple

swapping of S table entries in the memory update function.

2.2.3 A Stream Cipher Allegedly Used in WordPerfect 6

In 1999, John Kuslich of CRAK Software, a password recovery company in the USA,

posted an article to the Internet newsgroup sci.crypt describing a stream cipher that is

allegedly used in \a very well known word processor" [27]. The author of the posting

was asking for help in the cryptanalysis of the cipher.

We asked for more speci�c details about the cipher and Kuslich wrote that the cipher

is used in the latest versions of the WordPerfect word processing software (versions 6,

7 and 8) for PCs for encrypting document �les with a password [29]. The encryption

algorithm was reverse engineered from the WordPerfect software. Kuslich was kind

enough to provide us with a reasonably clear description of the stream cipher, but did

not provide certain implementation details that would be necessary to: (1) verify that

the stream cipher described is the same as the one used in WordPerfect; and (2) write

a password cracker for WordPerfect.

The encryption algorithm used to protect documents in WordPerfect versions 4.2

and 5.0 was cryptanalysed in 1987 and 1991 [3, 2], and there are currently a number

of web pages that describe how to break the encryption in WordPerfect 5, which was

based on a repeating-key cipher and could be broken by adapting classical methods of

breaking Vigenere ciphers.

On the other hand, whilst commercial password recovery software for WordPer-

fect 6 exists, to date there has been no published description of the cipher it uses or

its cryptanalysis. WordPerfect o�ers two levels of protection to the user: regular or

enhanced. Kuslich says:

\I believe, but would have to verify, that the only di�erence between en-

hanced and regular WP encryption is the case sensitivity of the password.

In other words, it adds nothing to the strength of the cipher." [29]

What follows is a description of the cipher, based on the description in [27], and our

cryptanalysis of the cipher.

The memory state of the cipher is a 32-byte shift register. In each cycle, the register

is shifted by one byte (the keystream byte) and a new byte is loaded into the empty

end of the shift register, which is computed as follows:



CHAPTER 2. KEYED NON-SURJECTIVE FUNCTIONS IN STREAMCIPHERS54

All bytes in odd positions of the shift register are XORed and used as an index

into a �xed 256-byte table TO, and all bytes in even positions of the shift register are

XORed and used as an index into a di�erent �xed 256-byte table TE. Both TO and TE

are non-surjective functions on Z256. The two values obtained, from TO and TE , are

XORed and used as the new byte in the empty end of the shift register.

Letting ai denote the (i+ 1)-th byte (from the left) in the shift register, we have

(a00; : : : ; a
0

30; a
0

31) = (a1; : : : ; a31; TO(�
15
i=0a2i+1)� TE(�

15
i=0a2i)) (2.7)

The byte a0 is the keystream byte, which is XORed with the plaintext byte to give the

ciphertext byte.

Kuslich gave some more information about the problem:

\[T]he password is entered from an standard initial state (always the same

for all �les) as unicode data one byte at a time as the SR is cycled." [28]

\The password is XORed into the empty end of the shift register at a

certain point in the shift cycle in a particular way (the password characters

are not just XORed in directly, they have to be in a particular format �rst),

secondly, there is a "magic number" Xored in in a similar fashion." [28]

This suggests that the cipher has a special clocking rule when it is initialised, in

which a password or \salt" byte is XORed to the feedback byte in each clock cycle.

The salt is a sequence of pseudo-random bytes prepended to the password to ensure

that two identical �les encrypted with the same password result in di�erent ciphertexts.

Let R = (r0; r1; : : : ; rN�1; rN ; : : : ; rN+P�1) be a sequence of bytes, in which the �rst N

bytes are the salt and the subsequent P bytes represent the Unicode-encoded password

string. Then, in clock cycle t of the initialisation phase, the shift register is updated by

(a00; : : : ; a
0

30; a
0

31) = (a1; : : : ; a31; TO(�
15
i=0a2i+1)� TE(�

15
j=0a2j)� rt) (2.8)

The shift register is initialised to a constant value (which we call the setup constant)

at clock cycle t = 0, then clocked N times with the salt added into the update rule,

clocked a further P times with the Unicode-encoded password added into the update

rule, and clocked 128 � N � P times with the standard update rule. In total, the

initialisation phase clocks the shift register 128 times [27].

We assume that the attacker has access to the keystream produced by this cipher

(e.g., determined from known plaintext), and that the tables TE and TO, the setup

constant and the salt are known (in WordPerfect, the salt is stored within the password-

protected document �le). The problem is to recover the password (i.e., the bytes



CHAPTER 2. KEYED NON-SURJECTIVE FUNCTIONS IN STREAMCIPHERS55

RN ; : : : ; RN+P�1) used within the initialisation phase. The length of the Unicode-

encoded password P will be even, since every character encoded in Unicode uses 16

bits (ASCII uses only 7 bits). When encoding text, eight bits are set to zero, so we can

expect the values rN+2i+1, where 0 � i < P=2, to have a value of zero.

We present a fast method to recover the password, provided that the length of the

password P is less than or equal to 32 bytes (16 text characters). Our method is a

divide-and-conquer attack. Let the shift register at clock cycle t be denoted by At.

The �rst part of the attack determines the values of the shift register after the salt

is loaded (at clock cycle t = N) and also 32 steps after the password is loaded (at

t = N + 32).

1. Initialise a 32-byte register A0 with the setup constant.

2. Clock the register N times with the salt (r0; : : : ; rN�1) to obtain the value of AN .

We store this value in a 32-byte register X.

3. Determine the value of A128 from known plaintext. Any 32 consecutive keystream

bytes reveal the state of the shift register. Even if the known keystream bytes

are not the �rst 32 bytes generated directly after the cipher initialisation phase

(when t = 128), the shift register can be clocked backwards (more on this later)

to obtain a list of possible values for A128.

4. Clock the register backwards 96 � N times to get AN+32. There are no salt or

password bytes loaded into the register during this part of the cipher initialisation

phase, so it is relatively straightforward to do this. We end up with a list of

possible values of AN+32. We store this list of values in an array of 32-byte

registers Y .

Step 4 will only give us the correct value of AN+32 if the password is less than 32 bytes,

because we are assuming that there were no unknown bytes rt loaded into the register

in the last 96�N clock cycles of the cipher initialisation phase.

The second part of the attack is an iterative algorithm that recovers the sequence of

32 bytes (rt; : : : ; rt+32) loaded between two states At and At+32. In this instance, t = N ,

so that the sequence recovered will be the password (assuming that the password is less

than 32 bytes in length). The bytes rN+1; rN+3; : : : ; rN+31 will be equal to zero, since

we expect the password to be Unicode-encoded text. The idea behind the following

algorithm is that we compare portions of the registers in the list Y with the register

X, exploiting the fact that in each clock cycle precisely one byte changes in the state.



CHAPTER 2. KEYED NON-SURJECTIVE FUNCTIONS IN STREAMCIPHERS56

We use this to discard register states in Y that could not have followed from the state

X, and thus aim to converge the list Y on the state X. In this process, we will

try possible values of the password bytes rt in order to successfully �nd the correct

predecessor state (which would follow from the state X) and thus determine the actual

or equivalent password bytes.

In each iteration, the following algorithm examines one pair of possible states (i.e.,

the states in two clock cycles): one representing the zero byte of the encoded password,

which is used to discard possible states, and the other is the state caused by a non-zero

password character (e.g., alphabetic or numeric), which we use to deduce the password

character.

1. Let t = 32, the number of clock cycles separating X and Y .

3. Decrement t by one.

2. Clock backwards each register in the list Y to obtain the list of states correspond-

ing to AN+t. Let this list of states replace the current list Y .

4. Compare the �rst 32 � t bytes of each register in Y with the last 32 � t bytes

of the register X. Remove any registers from Y that do not match, since they

would not follow from X.

5. Decrement t by one.

6. For each possible non-zero value of the byte rN+t (alternatively: for all possible

alphabetic, numeric and other byte values that would be normally be used in a

password):

6.1. Let Z be a copy the list of states Y . We use Z as a temporary working copy of

Y .

6.2. Clock backwards each register (using our guess for rN+t) in the list Z to obtain

the list of states corresponding to AN+t.

6.3. Compare the �rst 32� t bytes of each register in Z with the last 32� t bytes of

the register X. Remove any registers from Z that do not match, since they would

not follow from X. If no registers in the list Z remain, then our guess rN+t is not

valid. If some states in Z do exist, then we note that rN+t is a possible candidate

for the actual rN+t in the password sequence.

7. For each register in the list Y :



CHAPTER 2. KEYED NON-SURJECTIVE FUNCTIONS IN STREAMCIPHERS57

7.1. Shift each byte to the right by one (losing the rightmost byte) and let the leftmost

byte equal the byte in position t of X (considering the leftmost byte as being in

position 0). This has the e�ect of clocking the register backwards by one, giving

us a list of of registers corresponding to AN+t.

8. If t is non-zero then go to Step 3.

Earlier we explained that it was necessary to clock the shift register backwards and

that doing so will result in a number of possible predecessor states (depending on how

skewed the distribution of the TE and TO tables are). The memory update function is

that of a non-linear feedback shift register and is not bijective. Given a 32-byte value

At+1, we may �nd that either (1) there will be at least one possible value of At which

can produce the state At+1 by the update function; or (2) there are no valid possibilities

for the predecessor state At (i.e., the state At+1 cannot occur by the update function).

From equation 2.8, we have

a031 = TE(a0 � a2 � : : :� a30)� TO(a1 � a3 � : : : � a31)� rt

Substituting a0i�1 for ai:

a031 = TE(a0 � a01 � : : :� a029)� TO(a
0

0 � a02 � : : : � a030)� rt

Rearranging to give an equation for a0:

a0 = T�1
E (rt � a031 � TO(a

0

0 � a02 � : : :� a030))� a01 � : : :� a029

This equation is the basis for the shift register inversion algorithm. The function T�1
E

may be unde�ned for certain inputs and may have many possible outputs for other

inputs. If the value of T�1
E (x) is unde�ned for a given x, then the shift register value

that we are trying to invert could not have occurred (otherwise we would expect at

least one value for T�1
E (x)), and so we immediately drop this search. Otherwise, we

continue computing the value or values for a0 and invert each possibility in turn.

First we build a special set of TE inversion tables.

1. Let C denote an array with 256 entries. Each entry in the array is initialised to

zero (i.e., C(x) = 0 for all x = 0; : : : ; 255).

2. We prepare six TE \inverse" tables TE;i, for i = 0; : : : ; 5. Each table maps one

byte to one byte.

3. For each byte x = 0; : : : ; 255:



CHAPTER 2. KEYED NON-SURJECTIVE FUNCTIONS IN STREAMCIPHERS58

3.1. Let TE;C(TE(x)) = x.

3.2. Increment C(TE(x)).

The counter array C keeps track of the \depth" of each entry in the TE \inverse" tables.

Once these tables have been computed, the algorithm to invert the shift register can

be executed. The algorithm takes a list of 32-byte states Y and a one byte value rt (set

to zero for reversing the normal clocking rule of equation 2.7), and generates a list of

predecessor states.

1. For each 32-byte state A = (a0; a1; : : : ; a31) in the list of states Y :

1.1. Let x = TO(�
15
i=0a2i)� a31 � rt.

1.2. If C(x) equals zero then this state has no predecessors, so return to Step 1.

1.3. For each i = 0; : : : ; C(x)� 1:

1.3.1 Let z0 = TE;i(x)�
L14

j=0 a2j+1.

1.3.2 Let zj = aj�1 for j = 1; : : : ; 31.

1.3.3 Note that the array Z = (z0; : : : ; z31) is a predecessor state of A.

2.3 Non-Surjective Functions in Keystream Generators

As already explained, the keystream generator should be a surjective function from the

memory state to a keystream unit. Given the output of this function, i.e., a keystream

unit, it should be diÆcult to determine precisely which input generated the output.

A non-surjective function may be trivially created from a surjective one simply by

extending the codomain (without changing the function itself), and our theory does

not apply to such a general de�nition. This chapter speci�cally concentrates on non-

surjective functions in which the domain and codomain are �nite and of the same size.

Equivalently, the function would be non-bijective. To show that a function of this type

is non-surjective, it suÆces to show that collisions exist, i.e., that the function has two

distinct inputs which result in the same output. Because the domain and codomain

are the same size, this implies that there is some element in the codomain that has no

preimage.

The stream ciphers which are weakened by non-surjective keystream generators also

introduce some key element inside or subsequent to the non-surjective function, which


